Extreme-k and Ga₂O₃

power moves

Barium titanate layer massages peak electric field pain in lateral transistors.

hio State University in the USA has claimed the highest reported power figure of merit for gallium oxide (β -Ga₂O₃) lateral transistors of 376MW/cm² [Nidhin Kurian Kalarickal et al. **IEEE Transactions on** Electron Devices, vol68, Issue 1 (January 2021), p29]. The researchers used an insulator consisting of barium titanate (BaTiO₃), a perovskite oxide that combines an extreme dielectric constant with high breakdown field strength (>8MV/cm).

The dielectric enabled a reduction in peak fields for a given bias, according to simulations. Radio frequency (RF) and power electronics could benefit from higher average electric fields enabling better efficiency, power density, and faster speed.

The team comments: "The integration of extreme permittivity dielectrics based on perovskite oxides into conventional and widebandgap semiconductors such as Si, GaAs, GaN and SiC could enable unprece-

Figure 1. (a) Epitaxial/device diagram of BaTiO₃/ β -Ga₂O₃ MISFET. (b) Simulated band diagram along vertical cutline through gate.

Technology focus: Power transistors 75

dented performance improvements in RF and power electronics devices."

The use of the BaTiO₃ dielectric also enabled a higher channel charge density of 1.6×1013 /cm², reducing onresistance. The β -Ga₂O₃ has a theoretical breakdown field strength of 8MV/cm, which is much greater than the 3MV/cm for gallium nitride (GaN). One drawback of β -Ga₂O₃ is a lower mobility. This can be compensated for somewhat with the higher channel charge. The researchers fabricated lateral

metal-insulator-semiconductor field-effect transistors (MISFETs) on β -Ga₂O₃ with extreme-k BaTiO₃ as the insulator (Figure 1). The channel region was formed using 880°C metal-organic chemical vapor deposition (MOCVD) of β -(Al_xGa_{1-x})₂O₃/Ga₂O₃ layers on iron-doped β -Ga₂O₃ substrate. The 5x10¹⁸/cm³ intentionally doped aluminium/gallium oxide layers were achieved with silicon from silane (SiH₄).

Source and drain regions were defined using optical lithography followed by silicon ion implantation and activation by 900°C annealing for 30 minutes. The source and drain were then etched down to the β -Ga₂O₃ and annealed metal contacts formed from titanium/gold/nickel.

The BaTiO₃ was applied using 670°C RF sputtering from a sintered BaTiO₃ source. The BaTiO₃ was 73nm thick, a little short of the 75nm target. The sputtering had a negative effect on the channel resistance, which the researchers hope could be ameliorated in the future with an Al_2O_3 interlayer to avoid sputter damage. The source/drain ohmic contacts also suffered from sputter degradation, which could be improved by applying the metals after the BaTiO₃ and/or by optimizing the metal stack.

The device was completed with mesa isolation etching and deposition of a nickel/gold/nickel Schottky gate. The gate–drain spacings (L_{gd}) ranged from 0.5µm to 6µm. The gate length was 0.7µm.

Capacitance–voltage measurements suggested a dielectric constant of 235 for the $BaTiO_3$, but the team comments: "This is only a lower bound estimate on the dielectric constant since there is a small depletion of charge in the channel after the deposition of $BaTiO_3$. Nevertheless, the lower bound estimate of 235 is high enough to ensure electric field management."

The lowest on-resistance was 13.6 Ω -mm, normalized to the gate width with 0.5 μ m L_{gd} and 1.5 μ m L_{sd}. The drain current reached 359mA/mm — "the highest reported in any epitaxially grown β -Ga₂O₃ lateral transistor device under dc conditions, and higher currents have only been obtained in β -Ga₂O₃ nanomembrane transistors transferred onto high-thermal-conductivity substrates like diamond and Si," according to the team.

The three-terminal breakdown voltage (V_{br}) increases with L_{qd} , with the highest value being 918V for $6\mu m$

Figure 2. Benchmark plot against previous β -Ga₂O₃ lateral transistor reports.

spacing. For 0.5µm Lgd breakdown occurred at 201V. The average field at breakdown reduced from 4MV/cm at 0.5µm Lgd to 1.5MV/cm at 6µm.

Reverse-bias current measurements suggested that gate leakage limited the breakdown performance. Simulations showed a spike in electric field at the gate corner, which in the device would increase gate current leakage and result in dielectric breakdown.

The power figure of merit V_{br}^{2}/R_{spON} balances the trade-off of breakdown and specific on resistance, normalized to the source–drain area (L_{sd} x width). The devices all achieved a value for this figure of merit greater than 147MW/cm², reaching 376MW/cm² for 4.7µm L_{sd} and 3µm L_{gd} , which had 640V V_{br} and 1.08m Ω -cm² R_{spON} . The team claims the 376MW/cm² figure as "the highest reported value for any β -Ga₂O₃ transistor to the best of our knowledge" (Figure 2).

The researchers comment: "The extreme-k field management strategy using $BaTiO_3$ as the gate dielectric has thus resulted in superior performance even in the absence of additional field termination structures like field plates."

The team hopes that future devices could include such termination to further improve performance. ■ https://doi.org/10.1109/TED.2020.3037271 Author: Mike Cooke

www.semiconductor-today.com